Effect of grain size on the strain rate sensitivity of CoCrFeNi

high-entropy alloy

Yakai Zhao^{a,b}, Xutao Wang^a, Tangqing Cao^a, Jae-Kyung Han^c, Megumi Kawasaki^c, Jae-il Jang^d, Heung Nam Han^e, Upadrasta Ramamurty^b, Lu Wang^a, Yunfei Xue^{a,*}

 ^aSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
^bSchool of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
^cSchool of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
^dDivision of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
^eDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

*Corresponding author: <u>xueyunfei@bit.edu.cn</u> (Y. Xue)

Figure S1 Variations in Vickers hardness with equivalent strain, ε_{eq} . The Vickers hardness (HV) across the diameter of each HPT disc was measured using a Wolpert-401MVD Micro-Hardness Tester (Wilson Wolpert Instruments, Aachen, Germany) with a peak load of 980 mN. The equivalent strain ε_{eq} imposed on the HPT-processed disk is given by $\varepsilon_{eq} = 2\pi Nr/(\sqrt{3} \cdot t)$, where r and t are the radius and thickness of the disk, respectively, and N is the number of torsional revolutions.

Figure S2 (a) Double logarithmic plots of hardness vs. \mathcal{E}_{a} (= (d*h*/d*t*)/*h*) for estimating strain-rate sensitivity exponent, *m*, and (b) plots of logarithmic \mathcal{E}_{a} vs. hardness for calculating activation volume, V^* .